

Intensive Quenching to Produce **High Performance Cast Parts**

Laura Bartlett, Ron O'Malley, Mario Buchely Student: Kingsley Amatanweze Missouri University of Science & Technology

Innovative Casting Technologies (ICT) AMC Technology Review August 17-18, 2022 MISSOURI Chicago, IL

Needs and Benefits

- <u>Reduced operation and sustainment costs</u> of weapon systems through better reliability of replacement parts
- Minimized casting weight by improving steel performance
- Enhanced design and manufacturing technology to meet aggressive requirements for legacy and future combat systems
- Progress
- Intensive spray quench system at Missouri S&T fully operational
- Demonstration of IQ technology for complex castings
- Improvement in mechanical properties reduced distortion
- Evaluation of cast surface
- Transition to Industry
- Develop Smart IQ Spray facility
- Industry standard for evaluating quench performance

Objectives

Problems

- DLA needs cost-effective cast spare parts and rapid transition to supply chain
- <u>Traditional quenching technologies</u> produce non-uniform cooling and result in distortion, cracking, and tensile residual stress on the surface
- Complex castings and higher alloy steels are difficult to quench without cracking
- Oversized quench tanks are needed at high maintenance cost and extra expense
- Results in scrapping of otherwise good castings

Project Goals

Evaluate the use of IQ technology to increase performance and reliability

- Complex geometry cast parts
- Hard-to-quench steel chemistries prone to distortion and cracking
- Castings with different surface conditions: scale, surface roughness, and surface defects

Technology Development

AMERICAN METALCASTING CONSORTIUM

Intensive Quenching Benefits

- Uniform and immediate fast cooling of steel surface – compressive stress that resists quench and fatigue cracking
- Less distortion and resistance to quench cracking
- Reduction of quench tank size
- Application to Castings:
- Goal: More dimensional stability, less cracking during quenching of castings
- Can it be used for complex geometry castings? – thick and thin section sizes
- What is the effect of surface roughness, scale formation, porosity, and inclusions on quench performance?
- Sensitivity of different chemistries

Cooling Rate, •C/s

Needs and Benefits

Benefits to the DLA/DoD:

- <u>Reduced operation and sustainment costs</u> of weapon systems through better reliability of replacement parts
- Cost savings reduction of quench tank size and operation costs
 - Improved casting quality / performance
 - Reduction in weight
 - Higher sustainability
 - Faster procurement
- Example part: hammer casting
 - Need high hardness and good toughness
 - Complex geometry
 - Difficult to water quench without cracking

Spray Quench Tank Design

- Intensive spray quench at Missouri S&T
- Nozzles provide proper water jet impingement on the entire surface
- Articulated array of nozzles quenching of different geometry castings
- 200 psi with 300gal/min multistage pump
- 500 gal tank capacity

AMERICAN METALCASTING CONSORTIUM

 Comparison to immersion quench – different partner foundries and heat

treaters

model

AMERICAN METALCASTING CONSORTIUM

Industrial Casting IQ Trials – Hammer Casting

- Finite Element model: Abaqus-Dante
 - One quarter of the geometry was modeled
 - Material similar to 4340
- Heating
 - From 20°C to 1000°C
 - 3600s
- Air-transfer
 - 150s
- Hard quench <u>or</u>
 - 600s
 - Water temp. 20°C

- Interrupted quench
 - 30 sec
 - air cool
 - Water temp. 20°C

FE model of the Hammer: Only a quarter of the pieced was modeled

FE model: Hard Intensive Quench Hardness and Microstructure Results

- Hardness
 - 61-57 HRC
- Martensite
 - 100% around surface
 - ~60% at center of the core
- Lower Bainite
 - ~35% at the center of the core

FE model: Hard Intensive Quench Hardness Residual Stress Results

- Residual stress after quenching
 - Max.
 ~1390MPa (red areas)
 - ~1000 MPa
 (yellow areas)

Results of residual stresses after quenching: von Mises stresses are shown. <u>Arrows are pointing regions of high</u> <u>tensile residual stress (>1000MPa)</u>

Comparison of FE Quench Simulation to Quenched part

 High values of tensile stress in FE simulation show agreement with quench crack locations

Interrupted Intensive Quenching

- Hammer casting austenitized at 1000°C for 2hrs in protective stainless steel foil.
- Removed from furnace and foil removed back in furnace for 10min
- Quench in IQ tank <u>Interrupted quench 20°C</u> water max water pressure (180psi) for 30 sec – air cool
- Then tempered at 235C for 7hrs
- Air cool
- Inspect for cracks
- Section for hardness and microstructure
- Compare to Dante modeling

Hardness Profiles After Tempering

AMERICAN METALCASTING

CONSORTIUM

The Charpy samples 2,3 and 6 were be broken (at room temperature) to determine notch toughness

Samples	2	3	6
Toughness (Joules)	9.56	6.09	7.78

Evaluation of Distortion and Cracking

Navy C-Ring Castings – 4340 steel billet

- Comparison of different chemistries
- Modeling of quenching process distortion, microstructure and residual stress development
- Intensive quenching trials at Missouri S&T
- Immersion tank quenching at 8 different foundries and heat treaters
 - Develop baseline for expected distortion levels
 - Develop a standard practice for foundries to evaluate their quench practice

DISTRIBUTION A. Approved for public release

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi1qOC6maTiAhUROK0KHeq_BR8Qj hx6BAgBEAM&url=https%3A%2F%2Fwww.industrialheating.com%2Farticles%2F93089-the-navy-c-ring-test---a-practical-tool-for-the-heattreater&psig=AOvVaw1T9NBg4peIJ39DGw0WF4c4&ust=1558238621510801

Abaqus / Dante Modeling

1. Heat Up

- From 20°C to 900°C per 3600s
- HTC1 coefficient was used (see figure 1)
- 2. Air-Transfer
 - Surrounding air at 200°C per 15s
 - HTC2 coefficient was used (see figure 1)
- 3. Quenching
 - Contact with water at 25°C per 600s
 - HTC3 coefficient was used (see figure 2)
- 4. Air-Cooling
 - All body to 25°C

AMERICAN METALCASTING CONSORTIUM

HTC2 coefficient was used (see figure 1)

Figure 1. Heat transfer coefficients HTC1 for Carburization (Furnace curve), and HTC2 for Air-transfer and Air-cooling (Still Air curve)¹

¹ Brooks, B.E., and Beckermann, C., "Prediction of Heat Treatment Distortion of Cast Steel C-Rings," in Proceedings of the 61st SFSA Technical and Operating Conference, Paper No. 4.5, Steel Founders' Society of America, 2007.

² Sugianto, A., et al. "Validity of Heat Transfer Coefficient based on Cooling Time, Cooling Rate, and Heat Flux on Jominy End Quench Test." *Materials Science And Technology-Association for Iron and Steel Technology*- 6 (2007).

Modeling of Temperature, Hardness, and Microstructure

kej: Cetturiseton comietti: 0. Stagi Time = 0.000 mary Uer: NTL1 Mommed Ver: U. Deformation Scale Rector: +3.000e+01

Increment 0: Step Time = 0.000 Primary Var: SDV_940DHESS Deformed Var: U Deformation Scale Pactor: +3.000e+01

Step: Carbunzanon Increment 0: Step Time = 0.000 Primary Var: SDV_MARTENSITE Deformed Var: U Deformation Scale Factor: +3.000e+01

Temperature and Hardness predictions by Abaqus/Dante FEA model for 1045 steel

Abaqus / Dante FE Modeling

1. Heat Up

AMERICAN METALCASTING CONSORTIUM

- From 20°C to 900°C per 3600s
- 2. Air-Transfer
 - Surrounding air at 200°C per 15s
- 3. Quenching
 - Contact with water at 25°C per 600s

d

4. Air-Cooling

- Indeformed - 1045 - All body to 25°C

FE Model	d [mm]	% Change
Initial	12.7	
Final 1045	12.95	1.97
Final 4320	13.41	5.59
Final 4340	13.24	4.25
Final 4350	13.21	4.02
	Januari and State Stat	and the second s

C-Ring Testing Plan

- 100 Navy C-Ring castings sectioned from 4340 billet
- Water-jet cut (at outside machine shop)
- Laser scanned Iowa State University
- 10 each sent to different 8 different foundries and heat treaters
- 10 quenched in Missouri S&T draft tube quench tank
- 10 quenched using IQ process

- Billet material provided by Nucor Memphis
- Estimated value \$4,000

AMERICAN METALCASTING CONSORTIUM

SOW for Partner Foundries

- Self study of quench tank parameters (volume, size, Temp. range, quenchant type, flow rate, transfer type and time, etc)
- Coat C-rings with anti-scale coating
- Fixture 5 C-rings at a time to Quench basket or rack
- Quench with normal production part loading
- Austenitize for 1hr at 900°C
- Quench into water record water temperature

Intensive Quenching of C-Rings

- Fixture designed for uniform quenching of Crings
- Full pressure 180 psi

Nozzle

- Hard quench for 8min
- Spray pattern important

Nozzle

Industrial quenching in a forced convection quench tank

AMERICAN METALCASTING CONSORTIUM

Evaluation of Defects on Quench Performance

- Determination effect of controlled "defects" on IQ performance
 - 10 additional C-rings machined
 - Holes of different sizes and different locations drilled to simulate inclusions and porosity
 - Measure response distortion, cracking, residual stress.

Microstructure and Hardness

- Rings 01, 11, 21, 31, etc.
 retained for sectioning
- Hardness profile function of depth from surface
- Hardness varied from 58-59 HRC
- Slight variation in hardness between different industrially quenched castings

Sectioning diagram for hardness and micrograph samples

As-Quenched Hardness

AMERICAN METALCASTING CONSORTIUM

23

Metallography of Base Section : Ring 42

- Microstructure at the casting surface is lath martensite
- No evidence of decarburization

AMERICAN METALCASTING CONSORTIUM

Comparison of Hardness Results

25

Measuring Quench Performance

AMERICAN METALCASTING CONSORTIUM

 Dimensions measured before and after heat treatment using CMM and Laser scan

Journal of Materials Processing Tech. 264 (2019) 313–327

CONSORTIUM

- Performed in partnership with ISU Thank you!
- Preliminary scans of industrially quenched castings show gap opening of 2.9 ± 1.2%
- Consistent with FE models

C-Ring Casting Trials at Missouri S&T

- <u>Goals</u>: Evaluate the effect of casting surface on IQ performance
- Experimental Procedure:
- Remelt 4340 billet in a 187 lb heat
- Cast 12 4340 and 4350 Navy Crings
- As-cast C-rings:
- Stress relief annealed
- Section 13 mm fork gap
- Surface scan and IQ trials at Missouri S&T
- Compare with traditional immersion quench

• 4340 billet from Nucor

Fe	С	Si	Mn	Al	Мо	Р	S	Cr	Ni	Je.
Bal.	0.425	0.248	0.814	0.03	0.268	0.01	0.012	1.046	1.652	

C-Ring Casting Trials at Missouri S&T

- Procedure:
- 200lb induction furnace
 Ar cover
- ~187lb of 4340 steel billet charge
- 0.02wt.% Al deox in ladle
- Chemistry samples and temperatures taken as a function of time after fully liquid

- Special thanks to our melt crew!
- Castings poured: Navy C-ring castings and SFSA Cast in Steel Competition sword

C-Ring Casting Trial Heat Results

• Good control of temperature \rightarrow holding at 1550°C

AMERICAN METALCASTING CONSORTIUM

Charge calculator correctly predicts carbon recovery

AMERICAN METALCASTING CONSORTIUM

Casting Results

Fe	93.7
С	0.573
Si	0.242
Mn	0.754
Ρ	0.0236
S	0.0331
Cr	1.03
Мо	0.267
Ni	1.68
AI	0.032
Со	0.0429
Cu	0.206

Completion Plans

- Intensive quenching can be used to quench difficult and complex castings without cracking
- Fully hardened part with good mechanical properties
 - Next two months
 - Finish quenching experiments
 - C-ring industry work instruction in progress
 - Industry Heat Treatment Guidelines for Improved Quenching
- A draft final report will be submitted to ATI by 10/29/22

Transition to Industry

- Presentation at SFSA Research Reviews
- Publication in IJMC
 - Industry Heat Treatment
 Guidelines for evaluating
 distortion and cracking for
 improved quench performance
 - Implement a "Smart" IQ Spray Facility at partner foundry
 - Computer controlled and programable for each casting
 - Robot spray nozzles with vision system

Transition to Industry: Spray Nozzle Robotic Technology

Spraying Systems Inc.

- DoE project and several PSMRC industrial projects involving high temperature sensor development – <u>create a real-time temperature-</u> <u>strain map of the IQ process using optical fiber</u> <u>sensors</u>
- Intensive quenching of AF9628 Cooperative Agreement W911NF-19-2-044 with CCDC Army Research Laboratory
- Intensive quenching of FeMnAl steels SFSA DID Contract# SP4701-17-D-1161

Leveraging

Monitoring Temperature and Strain with Optical Fibers

At 0 min: Plate in the furnace, 117 min: water spray at ~50 psi, 289 min: no water and heat, 302 min: spray at 65 psi

Heating the plate in a box furnace at 200 °C for \sim 2 hours and then spraying water in a quench tank at 50-65 psi for \sim 4.5 hours

Leveraging

1. A thin-core high-NA optical fiber in a SS tube (SS 304 tubing: 1.2mm x 0.9mm), adhesive A

- Adhesives applied in a vertical configuration
- Cured at room temperature

	Adhesive A	Adhesive B
Working Temperature	500°F (260°C)	500°F (260°C)
Thermal conductivity (BTU- in/Hr. °F Ft ²)	35	40
Tensile Strength (psi)	10,000	6,550
Curing	24 hrs @ Room Temp.,	24 hrs @ Room Temp.,
Viscosity (cps)	100,000	43,000

Adhesive A: 132PIP-1 – 16oz - 130.50\$ Adhesive B: RK454 – 16oz – 217.6\$ ~50psi Video

Lightwave Technology Lab

DISTRIBUTION A. Approved for public release.

Project Metrics

AMERICAN METALCASTING CONSORTIUM

Description	Baseline	Threshold	Goal	How Measure d	Target Date	Progress	How Demonstrated
Development of IQ spray quench system (Measured as Quench Severity, H)	Draft tube Quench capacity H = 1.5	Intensive quench with H = 3	Intensive quench with H > 4	Hardnes s microsco py	August 20 2020	100%	Laboratory Experiment
Evaluation of IQ technology vs immersion quench to reduce distortion and cracking	Traditional Draft tube Quenched C- Ring Castings	Intensively quenched C- Ring Castings 30% reduction in distortion and cracking	Intensively quenched C- Ring Castings 50% reduction in distortion and cracking	Laser scan Optical metallogra phy	November 2022	90%	Laboratory Experiment
Evaluation of IQ technology on quench performance of industrial castings	Production of residual compressive stress on as- cast surface	20% Reduction in cracking	40% reduction in cracking	Optical metallography and inspection Mechanic al test specimen s	November 2022	80%	Laboratory Experiment
Implementation of IQ technology at Industrial Foundry	Traditional immersion quench	20% decrease in distortion and cracking	40% decrease in distortion and cracking	Laser scan Mag Particle Inspection Optical metallograp	Jan 2023		Industrial Trials 38

Intensive Quenching to Produce High Performance Cast Parts DLA - POC: <u>DLAR.DPR@dla.mil</u>

Description of Project:

This project will evaluate the use of intensive quenching technologies to produce beneficial compressive residual stress and reduce distortion and cracking in difficult to quench steel chemistries

Team:

Missouri University of Science & Technology, Steel Founders' Society of America, ATI

Problem

• Traditional quenching technologies - produce non-uniform cooling and result in distortion, cracking, and tensile residual stress on the surface

Objectives

- Evaluate the use of IQ technology to decrease distortion and quench cracking in:
- Complex geometry cast parts
- Hard to quench steel chemistries prone to distortion and cracking
- Castings with different surface conditions: scale, surface roughness and surface defects
- Produce compressive residual stress for better fatigue performance

Benefits to Warfighter

Reduce operation and sustainment costs of weapon systems through better reliability of replacement part

Milestones / Deliverables

- Missouri S&T intensive quench facility operational
- Casting of Navy C-Ring castings 43XX steels with different levels of inclusions and surface roughness
- Evaluation of intensive quenching in comparison to immersion quenching
- Low temperature stage one temper to preserve residual compressive stress
- Determination of improvement in fatigue properties
- In-plant (foundry) trial of intensive quench on actual casting