

Sub-sized CVN specimen conversion methodology

ASTM A01-13 meeting Tampa 2015 Kim Wallin

1

ASTM A370 Table 9

Full Size, 10 by 10 mm 3/4 Size, 10 by 7.5 mr		oy 7.5 mm	⅔ Size, 10 by 6.7 mm		1/2 Size, 10 by 5 mm		1/3 Size, 10 by 3.3 mm		1/4 Size, 10 by 2.5 mm		
ft·lbf	[J]	ft·lbf	[J]	ft·lbf	[J]	ft·lbf	[J]	ft·lbf	[J]	ft·lbf	[J]
40 ^A	[54]	30	[41]	27	[37]	20	[27]	13	[18]	10	[14]
35	[48]	26	[35]	23	[31]	18	[24]	12	[16]	9	[12]
30	[41]	22	[30]	20	[27]	15	[20]	10	[14]	8	[11]
25	[34]	19	[26]	17	[23]	12	[16]	8	[11]	6	[8]
20	[27]	15	[20]	13	[18]	10	[14]	7	[10]	5	[7]
16	[22]	12	[16]	11	[15]	8	[11]	5	[7]	4	[5]
15	[20]	11	[15]	10	[14]	8	[11]	5	[7]	4	[5]
13	[18]	10	[14]	9	[12]	6	[8]	4	[5]	3	[4]
12	[16]	9	[12]	8	[11]	6	[8]	4	[5]	3	[4]
10	[14]	8	[11]	7	[10]	5	[7]	3	[4]	2	[3]
7	[10]	5	[7]	5	[7]	4	[5]	2	[3]	2	[3]

TABLE 9 Charpy V-Notch Test Acceptance Criteria for Various Sub-Size Specimens

^A Table is limited to 40 ft-lbf because the relationship between specimen size and test results has been reported to be non-linear for higher values.

Table 9 is based on asimple thickness-ratiocorrection.

Sub-size specimens yield higher absolute energies

Sub-size specimens yield lower proportional energies

Effect of thickness on transition curve

McNicol, R. (1965, September). Correlation of Charpy Test Results for Standard and Nonstandard Size Specimens. Welding Research Supplement, pp. 385-393.

Sub-size specimens yield lower transition temperature

Wallin K. Methodology for selecting Charpy toughness criteria for thin high strength steels - Part 1: Determining the fracture toughness: D733. Jernkontorets Forskning, 1994.

Sub-size specimens yield lower transition temperature

Wallin K. Methodology for selecting Charpy toughness criteria for thin high strength steels - Part 1: Determining the fracture toughness: D733. Jernkontorets Forskning, 1994.

Sub-size specimens yield lower proportional upper shelf energies

Wallin K Upper shelf energy normalisation for sub-sized Charpy-V specimens. Int J of Pressure Vessels and Piping, 78, 2001, pp 463-470.

Sub-size specimens yield lower proportional upper shelf energies

Wallin K Upper shelf energy normalisation for sub-sized Charpy-V specimens. Int J of Pressure Vessels and Piping, 78, 2001, pp 463-470.

Sub-size specimens yield lower proportional upper shelf energies

Wallin K Upper shelf energy normalisation for sub-sized Charpy-V specimens. Int J of Pressure Vessels and Piping, 78, 2001, pp 463-470.

Sub-size specimens yield lower proportional upper shelf energies

THICKNESS CORRECTION FOR UPPER SHELF

Wallin K Upper shelf energy normalisation for sub-sized Charpy-V specimens. Int J of Pressure Vessels and Piping, 78, 2001, pp 463-470.

Temperature adjustment

$$\Delta T = -51.4^{\circ}C \cdot \ln \left\{ 2 \cdot \left(\frac{B}{10 \text{ mm}}\right)^{0.25} - 1 \right\}$$

Energy conversion

$$\frac{C_{VB} \cdot 10}{C_{V10} \cdot B} \approx 1 - \frac{0.5 \cdot \exp\left\{\frac{2 \cdot \left(C_{V10} / B - 44.7\right)}{17.3}\right\}}{1 + \exp\left\{\frac{2 \cdot \left(C_{V10} / B - 44.7\right)}{17.3}\right\}} \dots [J, mm]$$

$$\frac{C_{\text{VB-US}} \cdot 10}{C_{\text{V10-US}} \cdot B} = 1 - \frac{0.5 \cdot \exp\left\{\frac{2 \cdot \left(C_{\text{V10-US}} / \text{B} - 44.7\right)\right\}}{17.3}\right\}}{1 + \exp\left\{\frac{2 \cdot \left(C_{\text{V10-US}} / \text{B} - 44.7\right)}{17.3}\right\}} \dots [\text{J, mm}]$$

- The conversion accounts for the lower energy required to fracture shear lips.
- C_{V10-US} corresponds basically to a value without shear lips.
- For high CVN energies the measured full size specimen energy becomes therefore less than indicated by the equation.
- Begins to effect when $C_{V10} > 100 \text{ J}$.

McNicol, R. (1965, September). Correlation of Charpy Test Results for Standard and Nonstandard Size Specimens. Welding Research Supplement, pp. 385-393.

Enrico Lucon, C. N. (2015). Impact Characterization of 4340 and T200 Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1858.

Enrico Lucon, C. N. (2015). Impact Characterization of 4340 and T200 Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1858.

Enrico Lucon, C. N. (2015). Impact Characterization of 4340 and T200 Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1858.

E. Lucon, C. N. McCowan, and R. L. Santoyo, (2015). Impact Characterization of Line Pipe Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1865.

E. Lucon, C. N. McCowan, and R. L. Santoyo, (2015). Impact Characterization of Line Pipe Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1865.

E. Lucon, C. N. McCowan, and R. L. Santoyo, (2015). Impact Characterization of Line Pipe Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1865.

E. Lucon, C. N. McCowan, and R. L. Santoyo, (2015). Impact Characterization of Line Pipe Steels by Means of Standard, Sub-Size and Miniaturized Charpy Specimens. NIST Technical Note 1865.

Upper shelf behaviour

The ASTM hammer show for high toughness higher energies than the ISO hammer

energy conversion

Full size	3/4	2/3	1/2	1/3	1/4
[J]	[J]	[J]	[J]	[J]	[J]
10	7	7	5	3	2
14	10	9	7	5	3
16	12	11	8	5	4
18	13	12	9	6	4
20	15	13	10	7	5
22	16	15	11	7	5
27	20	18	13	9	7
34	25	23	17	11	8
41	31	27	20	14	10
48	36	32	24	16	12
54	40	36	27	18	13
60	45	40	30	20	14
68	51	45	34	22	16
76	57	51	38	25	18
86	65	57	43	27	19
100	75	66	49	31	20

temperature adjustment

Thickness	Adjustment [°C]		
Full size	0		
3/4	8		
2/3	11		
1/2	20		
1/3	34		
1/4	45		

杰

TECHNOLOGY FOR BUSINESS

trour